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We bring Federated Learning (FL) to

networks.

FL operates on
users’ devices and
networks

FL deals with more
nodes and slower
networks than
traditional distributed
learning

heterogeneous edge

Communication and
computation

bottlenecks are
exacerbated.




We bring Federated Learning (FL) to heterogeneous edge

networks.

FL operates on
users’ devices and
networks

FL deals with mor
nodes and slowe
networks than
traditional distribute
learning

Because resources are
distributed unevenly, certain

groups of clients will be
systematically excluded.




We propose strategies that reduce the communication and
computation footprint of federated training (FedAvg).

Locally train Lossy compression
Federated on the exchanges
Submodels, smaller sent from
subsets of the full server-to-client and

global model. client-to-server.




We propose strategies that reduce the communication and
computation footprint of federated training.
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(i) Original network, with a,, b,, and ¢, marked for dropout.
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Federated Submodels

Each client trains an update
to to a subset of the global
model.

For each client, we discard a
constant  percentage  of
activations at each fully
connected layer.



We propose strategies that reduce the communication and
computation footprint of federated training.
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Basis Transform

'

Subsampling

l

Quantization

Lossy Compression

We build upon the work of
Konec¢ny et al. (2016), which
focuses on compressing
gradient updates.

We use Kashin’s
representation to  further
mitigate the error incurred by
subsequent quantization.
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We propose strategies that reduce the communication and
computation footprint of federated training.
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Accuracy

Accuracy

We empirically show that these approaches are compatible
with one another.
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We empirically show that these approaches are compatible
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Takeaways

In brief,

e We bring Federated Learning (FL) to realistic heterogeneous edge
networks.

e We develop strategies that reduce the communication and computation
footprint of any model.
o Lossy compression
o Federated Submodels

e We empirically show that these approaches are compatible with one
another.
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Thank you

24



Questions

In brief,

e We bring Federated Learning (FL) to realistic heterogeneous edge
networks.

e We develop strategies that reduce the communication and computation
footprint of any model.
o Lossy compression
o Federated Submodels

e We empirically show that these approaches are compatible with one
another.
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Experiments with only lossy compression
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Experiments with only Federated Submodels
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